martes, 21 de agosto de 2007

.sistema nervioso central

La forma de las neuronas es muy compleja. Presentan unas prolongaciones más o menos delgadas, denominadas DENDRITAS y, normalmente, otra de mayor tamaño, llamada AXÓN o FIBRA NERVIOSA. Un conjunto de axones o dendritas forman un NERVIO, que suele estar recubierto de tejido conjuntivo. Las dendritas son vías de entrada de los impulsos nerviosos a las neuronas y los axones son vías de salida.Las neuronas se clasifican de muchas maneras:* Por el número de prolongaciones:- Monopolares: tienen una sola prolongación de doble sentido, que actúa a la vez como dendrita y como axón (entrada y salida).- Bipolares: Tienen dos prolongaciones, una de entrada que actúa como dendrita y una de salida que actúa como axón.- Multipolares: Son las más típicas y abundantes. Poseen un gran número de prolongaciones pequeñas de entrada, dendritas, y una sola de salida, el axón.* Por la función:Las neuronas se clasifican en sensoriales, motoras o interneuronas basándose en sus funciones.Las neuronas sensoriales son receptoras o conexiones de receptores que conducen información al sistema nervioso central. las que transmiten impulsos producidos por los receptores de los sentidosLas neuronas motoras o efectoras conducen información desde el sistema nervioso central hasta los efectores (las que transmiten los impulsos que llevan las respuestas hacia los órganos encargados de realizarlas" músculos, etc.)Las interneuronas que unen a dos o a mas neuronas, generalmente, se encuentran en el sistema nervioso central.Los cuerpos celulares de las neuronas se agrupan generalmente en masas llamadas ganglios. Esta constituida por los componentes usuales: un núcleo un citoplasma que se extiende hasta las ramas mas exteriores y una membrana celular que lo encierra todo. Envolviendo el axón exterior al sistema nervioso se encuentra una vaina celular, el neurilema, compuesta de celulosas de Schwann. La mielina es una envoltura espiralada de materia grasa que recubre a los axones. La vaina de mielina proporciona una clase especial de conducción nerviosa.El impulso nerviosoEl impulso nervioso es una onda de naturaleza eléctrica que se crea en las neuronas y en algunas células sensoriales, al incidir sobre ellas algún tipo de estímulo, externo o interno. Ese estímulo puede ser cualquier cosa, una sustancia química, una presión, los niveles de algún compuesto químico, una onda mecánica, la luz, el frío o el calor, etc. Esta onda se transmite por la membrana de la neurona en sentidoLas neuronas son células sintetizadoras de proteínas, con un alto gasto de energía metabólica, ya que se caracterizan por:* Presentar formas complejas y una gran área de superficie de membrana celular, a nivel de la cuál debe mantener un gradiente electroquímico importante entre el intra y el extracelular* Secretar distintos tipos de productos a nivel de sus terminales axónicos* Requerir un recambio contante de sus distintos organelos y componentes moleculares ya que su vida suele ser muy larga (hasta los mismos años que el individuo al que pertenecen).Por estas razones:* El núcleo es grande y rico en eucromatina, con el nucléolo prominente.* El ergastoplasma que se dispone en agregados de cisternas paralelas entre las cuales hay abundantes poliribosomas. Al microscopio de luz se observan como grumos basófilo o cuerpos de Nissl, los que se extienden hacia las ramas gruesas de las dendritas* El aparato de Golgi se dispone en forma perinuclear y da origen a vesículas membranosas, con contenidos diversos, que pueden desplazarse hacia las dendritas o hacia el axón.* Las mitocondrias son abundantes y se encuentran en el citoplasma de toda la neurona.* Los lisosomas son numerosos y originan cuerpos residuales cargados de lipofucsina que se acumulan de preferencia en el citoplasma del soma neuronal* El citoesqueleto aparece, al microscopio de luz, como las neurofibrilla, que corresponden a manojos de neurofilamentos (filamentos intermedios), vecinos a los abundantes microtúbulos (neurptúbulos).Estos últimos se asocian a proteinas específicas (MAPs: proteínas asociadas a microtúbulos) que determinan que el citoesqueleto de microtúbulos pueda:* definir compartimentos en el citoplasma neuronal: la MAP-2 se asocia a los microtúbulos del pericarion y dendritas mientras que la proteína tau se asociada a los microtúbulos del axón.* dirigir el movimiento de organelos a lo largo de los microtúbulos: la kinesina, se desplaza hacia el extremo (+), mientras que la dineína, se desplazan hacia elextremo (-) de los microtúbulosDENDRITAS - CUERPO NEURONAL - AXÓNLas dendritas constituyen la parte de la neurona que se especializa en recibir excitación, que puede ser de estímulos en el ambiente o de otra célula. El axón es la parte que se especializa en distribuir o conducir la excitación desde la zona dendritica.Las dendritas nacen como prolongaciones numerosas y ramificadas desde el cuerpo celular. sin embargo en las neuronas sensitivas espinales se interpone un largo axón entre las dendritas y el pericarion. A lo largo de las dendritas existen las espinas dendríticas, pequeñas prolongaciones citoplasmáticas, que son sitios de sinapsis. El citoplasma de las dendritas contiene mitocondrias, vesículas membranosas, microtúbulos y neurofilamentos.El axón es de forma cilíndrica y nace desde el cono axónico que carece de ergastoplasma y ribosomas El citoplasma del axón (axoplasma) contiene mitocondrias, vesículas, neurofilamentos y microtúbulos paralelos. Su principal función es la conducción del impulso nervioso Se ramifica extensamente sólo en su región terminal (telodendrón) la que actúa como la porción efectora de la neurona, ya que así cada terminal axónico puede hacer así sinapsis con varias neuronas o células efectoras.Las fibras nerviosas o axones, puede ser de dos tipos:* MIELÍNICAS, llamadas así por estar recubiertas con la membrana de unas células llamadas células de Schwann. Esta membrana se enrolla varias veces alrededor de la fibra nerviosa, que es muy rica en un fosfolípido llamado MIELINA. De este modo, varias células de Schwann llegan a cubrir toda la fibra constituyendo una especie de cubierta llamada VAINA DE MIELINA. Como la vaina está formada por varias células, en los puntos de contacto entre células contiguas esa cubierta queda interrumpida, recibiendo esos lugares el nombre de NODOS DE RANVIER.* AMIELÍNICAS o desnudas, son las fibras que no están recubiertas por vaina de mielina.La transmisión, que no es más que un desplazamiento de cargas eléctricas por la membrana neuronal, constituye el IMPULSO NERVIOSO. Este impulso es la base de todas las funciones nerviosas, incluidas las superiores. Debido a esto, y empleando instrumentos especiales de medición, se puede detectar la actividad nerviosa en forma de pequeñas corrientes eléctricas, tal es el caso de la ELECTROENCEFALOGRAFÍA.Para ver el gráfico seleccione la opción "Descargar" del menú superiorCuando el impulso nervioso llega al final del axón de una neurona tiene que "saltar" hasta las dendritas de la siguiente neurona porque las neuronas no están pegadas unas a otras, sino que hay un pequeño espacio entre una y otra, llamado ESPACIO SINÁPTICO. El "salto" del impulso nervioso se hace por medio de unas moléculas químicas llamadas NEUROTRANSMISORES que salen de la primera neurona, cuando llega el impulso nervioso, y llegan a la siguiente neurona provocando un nuevo impulso eléctrico.Los neurotransmisores son unas de las sustancias químicas más importantes que hay en nuestro cuerpo. Existen algunas sustancias químicas que pueden sustituir a las verdaderas neuronas, produciendo falsos impulsos nerviosos, tal como hacen algunas drogas alucinógenas, como el LSD o el peyote; otras drogas lo que hacen es retardar el Sistema Nervioso, bloquearlo, ejemplo de ello son los opiáceos como la heroína, y otras sustancias que excitan el Sistema Nervioso y lo activan, como sucede con la cocaína o las drogas sintéticas, o con sustancias de uso más habitual, como el café.Estos conceptos te pueden ayudar a entender por qué todas las drogas producen daños en el Sistema Nervioso, ya que actúan generalmente sobre las neuronas. No olvides que las neuronas no se pueden reproducir, que CADA NEURONA QUE SE PIERDE, SE PIERDE PARA SIEMPRE, es decir, nunca se recupera.Potencial de AcciónLa contracción sincronizada de todas las células que están acopladas eléctricamente constituyendo el tejido cardíaco, generan la contracción sincrónica de cada una de las cámaras del corazón. La contracción de cada célula está asociada a un potencial de acción.Interpretación del Potencial de Acción Celular:Una corriente procedente de un electrodo, o en el caso que nos ocupa, la onda de excitación procedente del marcapasos, añade cargas positivas al lado intracelular de la membrana reduciendo el potencial de reposo y provocando una lenta despolarización de la membrana. Este comportamiento se representa desde el punto a al b.A medida que el potencial de la membrana V se aproxima al umbral Vu, se abren los canales de iones Na en la membrana permitiendo su paso al interior de la misma. De este modo se consigue un equilibrio entre los iones Na que entran y los iones K que salen para compensar la entrada de carga positiva en el interior provocada por los iones Na. Este proceso tiene lugar de esta manera debido a la existencia de un potencial en la membrana y debido a que hay una mayor concentración de iones Na y K en el exterior y en el interior de la membrana respectivamente. Este proceso no se realiza indefinidamente sino que se alcanza un equilibrio cuando la diferencia de potencial debida al gradiente de concentración es igual al de repulsión debido a la carga a ambos lados de la membrana. Cuando V=Vu entonces los iones Na exceden a los K, esto ocurre en el punto b.Esta entrada neta de carga, hace que la membrana se despolarice más. Esta despolarización es regenerada ya que a medida que aumenta la carga aumenta el potencial positivo lo que hacen que se abran nuevos canales para el Na. Esto produce la rápida subida del PA.A medida que el potencial de membrana Vm se aproxima al potencial de equilibrio de los iones Na la entrada de iones Na a la célula se hace progresivamente menor haciendo que la tasa de cambio de potencial de haga más lenta. Esto se observa desde el punto c al d.Ahora los canales de iones Na abiertos se inactivan haciendo que el PA disminuya gradualmente restableciendo el potencial de reposo. A este proceso se le denomina proceso de repolarización.El proceso de repolarización se acelera por la apertura de los canales K dependientes del voltaje. Este flujo de salida de iones K elimina carga positiva de la célula. Puntos d y e.SinapsisDefinición: Un punto de machimbre o de enlace entre dos neuronas, la presináptica y la postsináptica. Las fibras nerviosas actúan como terminales de bujías eléctricas de los motores de explosión. Hay una luz o una brecha sináptica entre los terminales, brecha sináptica donde descargan vesículas sinápticas que difunden, ayudan a que ocurran reacciones físicas y químicas, recapturan los neurotransmisores ya usados y propagan potencial eléctrico desde una pared o membrana de la brecha o hendidura, la de la neurona presináptica, a la pared o membrana de la otra, la postsináptica.Los axones se ramifican en terminales especializados llamados botones o terminales presinápticos que descansan sobre la superficie de la membrana de una dendrita o cuerpo celular de otra neurona. Este punto de contacto se conoce como la sinapsis y a través de él se transmiten impulsos de una neurona a otra. El proceso es el siguiente: 1 el impulso nervioso llega a botón mediante vesículas que transportan los neurotransmisores, 2 cuando llegan al final del mismo las vesículas vacían su contenido de neurotransmisores en la hendidura sináptica 3 atraviesan la membrana de la neurona postsináptica 4 y transmiten el impulso.PermeabilidadDefinición: Propiedades de fluidez de la membrana biológica que permiten el pasaje de sustancias al interior y hacia el exterior de las células. Esa fluidez del estado coloidal es un logro de la homeostasis evolutiva. En el cerebro aparece una barrera hematoencefálica que frena el pasaje de toxinas ancestrales desde la sangre al cerebro, pero no frena toxinas químicas modernas de fuerte acción cerebral (drogas, alcohol, etc.).SarcomerosEs la porción de una fibra muscular situada entre dos membranas sucesivas.NeurotransmisorEs un grupo de sustancias químicas cuya descarga, a partir de vesículas existentes en la neurona pre-sináptica, hacia la brecha sináptica, produce un cambio en el potencial de acción de la neurona post-sináptica. Algunas moléculas son la acetilcolina, la norepinefrina y la dopamina. El gas óxido nítrico es también un neurotransmisor, con un especial mecanismo que no cumple en todos los términos con la definición dada.Sistema NerviosoEs el Sistema constituido por el cerebro y la cuerda espinal. El Sistema Nervioso es el rector y coordinador de todas las funciones, conscientes e inconscientes del organismo, consta del sistema cerebroespinal (encéfalo y medula espinal), los nervios y el sistema vegetativo o autónomo. A menudo, se compara el sistema nervioso con un computador: porque las unidades periféricas (órganos internos u órganos de los sentidos) aportan gran cantidad de información a través de los cables de transmisión (nervios) para que la unidad de procesamiento central (cerebro), provista de su banco de datos (memoria), la ordene, la analice, muestre y ejecute.Genéricamente se divide en: a.) Sistema Nervioso Central S.N.C, b.) Sistema Nervioso Autónomo S.N.AEl Sistema Nervioso Central se divide en Encéfalo, Medula y Nervios Periféricos.El Encéfalo: Es la masa nerviosa contenida dentro del cráneo. esta envuelta por las meninges, que son tres membranas llamadas: duramadre, piamadre y aracnoides. El encéfalo consta de tres partes: Cerebro, Cerebelo y Bulbo Raquídeo.El Cerebro: Es la Parte del sistema nervioso central caracterizado por un órgano gelatinoso, de redes de neuronas y neuroglías, ubicado en la parte anterior de algunos invertebrados y en todos los vertebrados, cuyas funciones son las de prestarse a la adquisición de señales de alarmas o seudo-alarmas y las de controlarlas y de contribuir a variadas homeostasis, junto con muchas otras funciones acerca de las cuales la ignorancia es muy grande. Forma circuitos de ida y vuelta con algunas glándulas hormonales y con el sistema nervioso periférico.Es la parte mas importante, esta formado por la sustancia gris (por fuera) y la sustancia blanca (por dentro), su superficie no es lisa sino que tienes unas arrugas o salientes llamadas circunvoluciones; y unos surcos denominados cisuras, las mas notables son llamadas las cisuras de Silvio y de Rolando. Esta dividido incompletamente por una hendidura en dos partes, llamados hemisferios cerebrales. En los hemisferios se distinguen zonas denominadas lóbulos, que llevan el nombre del hueso en que se encuentran en contacto. Pesa unos 1.200 gr. Dentro de sus principales funciones están las de controlar y regular el funcionamiento de los demás centros nerviosos, también en el se reciben las sensaciones y se elaboran las respuestas conscientes a dichas situaciones. Es el órgano de las facultades intelectuales: atención, memoria ...etc.El Cerebelo: Esta situado detrás del cerebro y es más pequeño (120 gr.); tiene forma de una mariposa con las alas extendidas. Consta de tres partes: Dos hemisferios cerebelosos y el cuerpo vermiforme. Por fuera tiene sustancia gris y en el interior sustancia blanca, esta presenta una forma arborescente por lo que se llama el árbol de la vida. Coordina los movimientos de los músculos al caminar.El Bulbo Raquídeo: Es la continuación de la medula que se hace más gruesa al entrar en el cráneo. Regula el funcionamiento del corazón y de los músculos respiratorios, además de los movimientos de la masticación, la tos, el estornudo, el vomito ... etc. Por eso una lesión en el bulbo produce la muerte instantánea por paro cardio-respiratorio irreversible.La Medula Espinal: La medula espinal es un cordón nervioso, blanco y cilíndrico encerrada dentro de la columna vertebral. Su función más importante es conducir, mediante los nervios de que está formada, la corriente nerviosa que conduce las sensaciones hasta el cerebro y los impulsos nerviosos que lleva las respuestas del cerebro a los músculos.Materia GrisDefinición: Las partes de corteza del cerebro son de color gris debido a la abundancia de neuronas y de sus dendritas, que tienen membranas de ese color. La materia blanca adquiere el color de la mielina. La palabra corteza o córtex se usa para una parte del cerebelo, que también posee una capa de ella.Materia BlancaDefinición: Partes interiores del cerebro (recubierto de materia gris) que alojan una alta concentración de axones blancos debido a la presencia de forros de mielina (células de neuroglia) que aíslan a los axones.Tipos de Receptores SensorialesExisten cinco (5) tipos diferentes:Meanoreceptores: reconocen la deformación mecánica del receptor o de células vecinas.Termoreceptores: Reconocen cambios de temperaturas, algunos receptores identifican el frío, otros el calor.Nocireceptores: Reconocen el daño tisular (lesión física o lesión química).Receptores electromagnéticos: Responden a la luz que llega a la retina.Quimioreceptores: Forman la fase de las sensaciones gustativas en la boca, olfatorias en la nariz y responden al nivel de oxigeno en sangre arterial, osmolaridad de líquidos corporales, concentración de dióxido de carbonos.Tipos de Receptores TáctilesSe conocen seis (6), pero es probable que existan otros:Algunas terminaciones nerviosas libres que se encuentran en cualquier lugar de la piel.Un receptor del tacto sensible, el corpúsculo de meissner, se encuentran en las porciones lampiñas de la piel.Receptores al tacto de extremo ensanchado (discos de merkel).Organo piloso terminal.Los órganos terminales de Ruffini.Corpúsculos de Pacini.Mecanismo de Regulación de T3 y T4Las dos (2) hormonas tiroideas importantes son la Tiroxina y Triyodotirosina, estas ejercen un profundo efecto en el índice metabólico del organismo.La más abundante de las hormonas que produce el tiroides es la tiroxina, también se producen cantidades de triyodotironina. La función de las dos (2) hormonas es cualitativamente la misma, pero difieren en rapidez e intensidad de acción. La Triyodotironina es unas cuatro (4) veces más potente que la sangre en cantidades mucho menores y persiste mucho menos tiempo que la tiroxina.Para conservar un metabolismo basal normal, disponemos de un mecanismo de retroalimentación especifica en el que intervienen el hipotálamo y la hipofisis anterior para controlar la secreción tiroidea según las necesidades metabólicas del organismo.Efectos de la hormona estimulantes del tiroides (tirotropina) sobre la secreción tiroideaLa TSH hormona estimulante del tiroides, aumenta la secreción de tiroxina y Triyodotironina por las glándulas tiroides produciendo la TSH en todas las actividades de las células glandulares tiroides.Aumenta la proteolisis de la tiroglobulina intrafolicular, con lo que aumenta la liberación de hormona tiroidea hacia la sangre circulante y disminuye la substancia folicular misma.Aumenta la actividad de la bomba de yodo que incrementa el índice de captación de yoduro en las células glandulares.Aumenta la yodación de la torisina y de su acoplamiento para formar hormonas tiroideas.Aumenta el tamaño y la función secretoria de células tiroideas.Aumenta el número de células de las glándulas y hace que se transformen de cuboides en cilíndricasRegulación hipotalámica de la secreción de TSH por la hipófisis anteriorLa estimulación eleectrica del área paraventricular del hipotalamo, aumenta la secreción prehipofisiaria de TSH y en consecuencia auemnta la actividad de la glandula tiroides.El control de la secreción prehipofisiaria lo ejerce la TRH (hormona de liberación de tirotropina). Esta hormona ejerce una acción directa sobre la hipofisis anterior, aumentando su secreción de TSH. La exposición al frío aumenta el ritmo de secreción de TSH por la prehipofisis.Se ha comprobado que los seres humanos que se desplazan a regiones artícas tienen metabilismo basales de 15% a 20 % superiores al normal, sin eemabrgo el hombre se abriga y el efecto no es mensurable.Ni los efectos emocionales ni la acción del frío se observan cuando el tallo hipofisiario se ha cortado, demostrando que estos están medidos por el hipotálamo.Efecto inverso de la hormona tiroidea sobre la secreción prehipofisiaria de TSH. Regulación por retroalimentación de la secreción tiroidea.Cuando la Hormona tiroidea esta aumemntada en los líquidos corporales disminuye la secresión de TSH por la prehipófisis.Es probable que el aumento de la hormona tiroidea inhiba la secreción de TSH por la hipófisis anterior, principalmente debido a un efecto de retroalimentación directa de esta glándula, pero quizás, en forma secundaria, a causa de efectos mucho más débiles que actúan a través del hipotálamo.Se ha sugerido que la hormona tiroidea reduce el número de receptores TRH en las células que secretan hormonas tiroestimulante. Por tanto, disminuyen considerablemente en estas células el efecto estimulante de la hormona de liberación de tirotropina del hipotálamo.El efecto del mecanismo de retroalimentación consiste en conservar en los líquidos circulantes del organismo una concentración casi constante de hormona tiroidea libre. Si hay un efecto de retroalimentación, a través del hipotálamo, además de la referida anteriormente, opera muy despacio y podría ser causado en parte por cambios en la temperatura del termostato hipotálamico, que ejerce efectos importantes en el control del sistema de la hormona tiroidea.Creado por loveyouever en 11:24
.

Blogged with Flock

No hay comentarios: